Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
3D场景理解的最新进展探索了视觉接地(3DVG),以通过语言描述定位目标对象。但是,现有方法仅考虑整个句子和目标对象之间的依赖性,从而忽略了上下文与非目标之间的细粒度关系。在本文中,我们将3DVG扩展到更可靠和可解释的任务,称为3D短语意识接地(3DPAG)。 3DPAG任务旨在通过明确识别所有与短语相关的对象,然后根据上下文短语进行推理,旨在在3D场景中定位目标对象。为了解决这个问题,我们在可用的3DVG数据集中的170k句子中标记了大约400k短语级别的注释,即NR3D,SR3D和ScanRefer。通过利用这些开发的数据集,我们提出了一个新颖的框架,即Phraserefer,该框架通过短语对象对准优化以及短语特异性预训练来进行短语感知和对象级表示学习。在我们的环境中,我们将先前的3DVG方法扩展到短语感知方案,并提供指标以衡量3DPAG任务的解释性。广泛的结果证实,3DPAG有效地提高了3DVG,而Phraserefer分别在SR3D,NR3D和SCANREFER上分别达到三个数据集(即63.0%,54.4%和55.5%)的最先进。
translated by 谷歌翻译
在本文中,我们提出了基于抑制增强面膜的注意力和交互式通道转换(Semicon),以学习处理大规模细粒图像检索任务的二进制哈希码。在半号中,我们首先开发出基于抑制增强的面膜(SEM)的注意力,以动态定位判别图像区域。更重要的是,与现有的注意机制不同,我们的SEM是为了限制此类区域而开发的,然后通过考虑以阶段的方式考虑激活区域之间的关系来限制其他互补区域。在每个阶段,交互式通道变换(ICON)模块之后旨在利用跨参与激活张量的通道之间的相关性。由于通道通常可以与细粒对象的部分相对应,因此也可以相应地建模该部分相关性,从而进一步提高细粒的检索精度。此外,要作为计算经济,图标是通过有效的两步过程实现的。最后,对我们的分号的哈希学习由全球和本地级分支组成,以更好地表示细粒对象,然后生成与多个级别相对应的二进制哈希码。五个基准细粒数据集的实验显示了我们优于竞争方法。
translated by 谷歌翻译
在立体声设置下,可以通过利用第二视图提供的其他信息来进一步改善图像JPEG伪像删除的性能。但是,将此信息纳入立体声图像jpeg trifacts删除是一个巨大的挑战,因为现有的压缩工件使像素级视图对齐变得困难。在本文中,我们提出了一个新颖的视差变压器网络(PTNET),以整合来自立体图像对的立体图像对jpeg jpeg trifacts删除的信息。具体而言,提出了精心设计的对称性双向视差变压器模块,以匹配具有不同视图之间相似纹理的特征,而不是像素级视图对齐。由于遮挡和边界的问题,提出了一个基于置信的跨视图融合模块,以实现两种视图的更好的特征融合,其中跨视图特征通过置信图加权。尤其是,我们为跨视图的互动采用粗到最新的设计,从而提高性能。全面的实验结果表明,与其他测试最新方法相比,我们的PTNET可以有效地消除压缩伪像并获得更高的性能。
translated by 谷歌翻译
基于深度学习的立体图像超分辨率(StereOSR)的最新研究促进了Stereosr的发展。但是,现有的立体声模型主要集中于改善定量评估指标,并忽略了超级分辨立体图像的视觉质量。为了提高感知性能,本文提出了第一个面向感知的立体图像超分辨率方法,通过利用反馈,这是对立体声结果的感知质量的评估提供的。为了为StereOSR模型提供准确的指导,我们开发了第一个特殊的立体图像超分辨率质量评估(StereOSRQA)模型,并进一步构建了StereOSRQA数据库。广泛的实验表明,我们的Stereosr方法显着提高了感知质量,并提高了立体声图像的可靠性以进行差异估计。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译